
© 2009 Cigital

Software Security

Touchpoint:

Architectural Risk Analysis

Gary McGraw, Ph.D.

Chief Technology Officer, Cigital

© 2009 Cigital

Cigital

 Founded in 1992 to provide software security and software

quality professional services

 Recognized experts in software security and software quality

 Widely published in books, white papers, and articles

 Industry thought leaders

http://www.cigital.com/books/wirelesssec/
http://www.cigital.com/books/80211/

© 2009 Cigital

ARA in Context:

State of the Practice

© 2009 Cigital

A shift from philosophy to HOW TO

 Integrating best practices into large organizations

 Microsoft’s SDL

 Cigital’s touchpoints

 OWASP adopts CLASP

© 2009 Cigital

What works: BSIMM

 Building Security

In Maturity Model

 Real data from

real initiatives

© 2009 Cigital

Two kinds of security defects
IMPLEMENTATION BUGS

 Buffer overflow

 String format

 One-stage attacks

 Race conditions

 TOCTOU (time of check to
time of use)

 Unsafe environment variables

 Unsafe system calls

 Cross-site scripting

 SQL injection

ARCHITECTURAL FLAWS

 Misuse of cryptography

 Compartmentalization
problems in design

 Privileged block protection
failure (DoPrivilege())

 Catastrophic security failure
(fragility)

 Type safety confusion error

 Insecure auditing

 Broken or illogical access
control (RBAC over tiers)

 Method over-riding problems
(subclass issues)

 Signing too much code

50% 50%

© 2009 Cigital

The bugs/flaws continuum

BUGS FLAWS

 Customized static rules (Fidelity)

 Commercial SCA tools: Fortify,

Ounce Labs, Coverity

 Open source tools: ITS4,

RATS, grep()

 Architectural risk analysis

gets() attacker in the middle

© 2009 Cigital

Software security touchpoints

© 2009 Cigital

Architectural Risk Analysis

© 2009 Cigital

BSIMM: Ten surprising things

1. Bad metrics hurt

2. Secure-by default

frameworks

3. Nobody uses

WAFs

4. QA can’t do

software security

5. Evangelize over

audit

6. ARA is hard

7. Practitioners don’t

talk attacks

8. Training is

advanced

9. Pen testing is

diminishing

10. Fuzz testing

 http://www.informit.com/articles/article.aspx?p=1315431

© 2009 Cigital11

Architectural Risk Analysis

For more information, see

http://www.cigital.com/services/security/

© 2009 Cigital

Touchpoint: Architectural risk analysis
Architectural Risk Analysis

Inputs OutputsActivities

Perform Attack

Resistance

Analysis

Perform

Ambiguity

Analysis

Perform

Underlying

Framework

Weakness

Analysis

Map

Applicable Attack

Patterns

Identify General
Flaws

 Non-Compliance

 Show where

guidelines are not

followed

Show Risks and

Drivers in

Architecture

Ponder Design

Implications

Unify

Understanding
 Uncover Ambiguity

 Identify

Downstream

Difficulty

(Sufficiency

Analysis)

 Unravel

Convolutions

 Uncover Poor

Traceability

Find & Analyze

Flaws in
 COTS

 Frameworks

 Network Topology

 Platform

Identify Services

Used By

Application

Documents

Security

Analyst

Generate Separate

Architecture

Diagram

Documents

Documents
Map Weaknesses

to Assumptions

Made by

Application

Attack Patterns

Show Viability of

Known Attacks

Against Analogous

Technologies

Architectural Risk

Assessment

Report

Software

Flaws

Documents

Attack

Patterns

Exploit Graphs

Secure Design

Literature

Documents

Requirements
Architectural

Documents

Regulatory

Requirements/

Industry

Standards

Build One Page

Architecture Overview

External

Resources

Mailing Lists

Product

Documentation

 Start by building a one-

page overview of your

system

 Then apply the three-

step process

 Attack resistance

 Ambiguity analysis

 Weakness analysis

© 2009 Cigital

Touchpoint: Architectural risk analysis
 Step one: get an architecture

 Forrest level view

 Up out of the code

 Widespread use of common
components helps (but also
has security impact!)

 Spring

 Hibernate

 Log4J

 OpenSSL

 Design patterns also help

© 2009 Cigital

Design diagrams need security too

14

Data Tier

OLTP

Stored

Procs

Blades

The

Brain

Free

Content

Profile

Messaging

Account

POD

POD Web

Service Main Site

E-Comm

Secure Site

Search

Help

Chat

Chat

In
te

rn
e

t

D
a

ta
 C

e
n

te
r

ASPX

Pages

Castor

Stored

Procs

Pollux

Stored

Procs
BrowserSmurf

Chat

Client

Herra

Customer

Service

Profile

Review

Smurf

Picker

D
a

ta
 C

e
n

te
r

O
ff
ic

e

Marketing

CS Rep

Ad Partner Site

Verisign

User

Identity

Store

Deployment

Descriptor

View

Form

Form request

Form

In
te

rn
e

t

D
a

ta
 C

e
n

te
r

Authentication

Status

User Creds

Configuration data

User Creds

Authentication

Status

© 2009 Cigital

Three steps to ARA

 Attack Resistance (use a CHECKLIST)

 Apply a list of known attacks (like STRIDE)

 Calculate risk-based impact

 Ambiguity Analysis (multiple PERSPECTIVES)

 Find attacks based on how the system works

 Expose invalid assumptions

 Weakness Analysis (DEPENDENCIES)

 Think through dependencies: toolkits and frameworks

 In, Over, Under, Outside

15

Am
biguity

Analysis

Attack

Resistance

Analysis

U
n
d
e
rl
y
in

g
F

ra
m

e
w

o
rk

 W
e
a
k
n
e
s
s

A
n
a
ly

s
is

© 2009 Cigital

Attack resistance: build an attack checklist

 Understand known attacks

 Designers – what controls are needed to prevent common

attacks?

 Attackers – what to try again

 Example: Microsoft SDL’s STRIDE model

 Spoofing, tampering, repudiation, info disclosure, denial of

service, elevation of privilege

 Start with common taxonomies

 7 Pernicious Kingdoms; McGraw

 19 Deadly Sins; Howard, LeBlanc, Viega

 48 Attack Patterns; McGraw/Hoglund

 Common Weakness Enumeration

 http://cve.mitre.org/cwe

16

© 2009 Cigital

Attack resistance: common design elements

 Flag design elements that are historically vulnerable to attack

 Enterprise applications share many of the same design

elements

 Distributed architecture

 Dynamic code generation and interpretation

 APIs across stateless protocols

 Rich Internet Applications

 Service-oriented Architecture

17

© 2009 Cigital

Example: distributed architecture risks

 Distributed systems are susceptible to network-based attacks

 Eavesdropping

 Tampering

 Spoofing

 Hijacking

 Observing

 Relevant Attack Patterns

 Interposition attacks

 Network sniffing

 Replay attacks

18

Interposition Attack

Fake

Server

Fake

Client

`

Client (Bob)

`

Attacker (Eve)

Server (Alice)

Replay Attack

Resend

Data

Intercept

Data

`

Client (Bob)

`

Attacker (Eve)

Server (Alice)

© 2009 Cigital19

Ambiguity analysis: model your stuff

 Modeling techniques help expose an application’s area of

potential vulnerability

 Multiple points of view (and sets of experience) help

 Trust Modeling identifies the boundaries for security policy for

function and data

 Data Sensitivity Modeling indentifies privacy and trust issues

for application data

 Threat Modeling identifies the attacker’s perspective and

areas of weakness

© 2009 Cigital

Ex: Threat modeling

 Threat: agents of

malicious intent

 Asset: function and

data the threat

desires

 Point of Attack:

Design element

requiring hardening

and/or the method

of attack

20

Saturday,

Hosting Data CenterInternet

Chemistry

Search

Sign Up

Chemistry

Browser

HTML

AJAX

Messaging

Profile

Free

Search

Personality

Test

Identity

Service

Identity

Verifier

Meyer’s Briggs

Member

Application

No Authorization

Member

Free Pages

Paid Pages

Database User

SOP

Hacker

Scammer

Identity

Thief

Malicious

Admin

User

2

1

3

4

5

6

2

Direct File Access

Direct Call

Direct File AccessAutomated

Messages

Backend Code Injection

Parameter

Manipulation

Cross Site Code Injection

Backend Code Injection

Forged Requests Against

User’s Other Sites

© 2009 Cigital

Ex: modeling users

 Threats = malicious

users

 Like users, they

have capabilities

within the system

 Threats have a

goal that usually

involves subverting

a security control or

finding a “loophole”

in the system

21

Hosting Data CenterInternet

Chemistry

Search

Sign Up

Chemistry

Browser

HTML

AJAX

Messaging

Profile

Free

Search

Personality

Test

Identity

Service

Identity

Verifier

Meyer’s Briggs

Member

Application

No Authorization

Member

Free Pages

Paid Pages

Database User

SOP

Paid

Member

Member

Guest

Scammer

Identity

Thief

Hacker

Malicious

Admin

© 2009 Cigital

Ex: assets

22

Hosting Data CenterInternet

Chemistry

Search

Sign Up

Chemistry

Browser

HTML

AJAX

Messaging

Profile

Free

Search

Personality

Test

Identity

Service

Identity

Verifier

Meyer’s Briggs

Member

Application

No Authorization

Member

Free Pages

Paid Pages

Database User

SOP

Hacker

Scammer

Identity

Thief

Malicious

Admin

 Application’s

functions

 Sensitive data

 Data controlling the

application’s state

 Users and the

assets of the other

systems the users

access

Credit Card

Personally Identifiable Information

1

2

Escalate Privilege

2

User

Assets of the User

6

Program Control Data

5

Credentials and Keys

3

PII in Log FIles

4

Program Control Data

© 2009 Cigital

Ex: points of attack

23

 Associate threat and

assets (determine

what the attacker can

do)

 Ponder nearest,

easiest targets first

 Designers: place

controls around

assets

 Attackers: start with

direct attacks and

graduate to multi-

step

Hosting Data CenterInternet

Chemistry

Search

Sign Up

Chemistry

Browser

HTML

AJAX

Messaging

Profile

Free

Search

Personality

Test

Identity

Service

Identity

Verifier

Meyer’s Briggs

Member

Application

No Authorization

Member

Free Pages

Paid Pages

Database User

SOP

Hacker

Scammer

Identity

Thief

Malicious

Admin

User

2

1

3

4

5

6

2

Direct File Access

Direct Call

Direct File AccessAutomated

Messages

Backend Code Injection

Parameter

Manipulation

Cross Site Code Injection

Backend Code Injection

Forged Requests Against

User’s Other Sites

© 2009 Cigital

Framework analysis

Software is built upon layers of other software

24

What kind of flaws exist?

 Known vulnerabilities in

open-source or product

versions

 Weak security controls

provided with the

framework

 Framework features that

must be disabled or

configured to their secure

form

Operating System

Application Middleware

(Application Server)

Application

Framework

(Struts/Spring)

Language

Runtime

Application

© 2009 Cigital

Framework analysis: interfaces & contracts

 Place components or application relative to

dependencies

 It is important to see the relationship of an

application or component with other callers of

shared code and data

 Identify libraries and secure library versions

 Show runtime in diagram where there are security

implications:

 Framework controls

 VM or other security sandboxes

 Client-side runtime

25

© 2009 Cigital26

Framework security controls

 The application environment provides controls. What are the

limitations?

 Cryptography

 Example: JCA

 Authentication and Authorization

 Example: JAAS

 Input Validation and Output Encoding

 .NET validateRequest

 Sandboxing

 JavaScript Same Origin Policy

© 2009 Cigital

Combine risks and rank

 Take all of your findings and consider business impact

 Rank the findings

 Come up with solutions

 See chapter 5 of “Software Security”

 http://www.informit.com/articles/article.asp?p=446451

© 2009 Cigital

Touchpoints adoption
 Code review

 Widespread

 Customized tools

 Training

 ARA

 Components help

 Apprenticeship

 Training

 Pen testing

 No longer solo

 Security testing

 Training

 Abuse cases and security requirements

 Training

© 2009 Cigital

Where to Learn More

© 2009 Cigital

informIT & Justice League

 www.informIT.com

 No-nonsense monthly security

column by Gary McGraw

 www.cigital.com/justiceleague

 In-depth thought leadership

blog from the Cigital Principals

 Scott Matsumoto

 Gary McGraw

 Sammy Migues

 Craig Miller

 John Steven

© 2009 Cigital

IEEE Security & Privacy Magazine + 2 Podcasts

 www.cigital.com/silverbullet

 www.cigital.com/realitycheck

 Building Security In

 Software Security Best

Practices column edited by

John Steven

 www.computer.org/security/bsisub/

© 2009 Cigital

Software Security: the book

 How to DO software security

 Best practices

 Tools

 Knowledge

 Cornerstone of the Addison-

Wesley Software Security

Series

 www.swsec.com

© 2009 Cigital

For more
 Cigital’s Software Security

Group invents and delivers
Software Quality Management

 WE NEED GREAT PEOPLE

 See the Addison-Wesley
Software Security series

 Send e-mail: gem@cigital.com

“So now, when we face a choice between

adding features and resolving security issues,
we need to choose security.”

-Bill Gates

